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Abstract 
In this review, data assimilation (DA) techniques used for tropical cyclones (TCs) are briefly overviewed. 
The strength and weakness of variational methods, ensemble methods, hybrid methods and particle filter 
methods are also discussed. Several global numerical weather prediction (NWP) models and their 
corresponding DA systems frequently used for TC forecasting and verification are described first. The 
DA research and development (R&D) efforts in the operational regional model from the National Centers 
for Environmental Prediction (NCEP)’s Hurricane Weather Research and Forecasting (HWRF) are then 
discussed in greater detail. Focused remarks on TC observations from reconnaissance, ground-based 
radar, enhanced satellite-derived atmospheric motion vectors (AMVs) and all-sky satellite radiances and 
their impacts on TC analyses and forecasts are addressed. Recent TC DA advancements and challenges 
on better use of observations and more advanced DA methods for TC application are also briefly 
reviewed. 

Keywords:  tropical cyclone, data assimilation, numerical weather prediction 

For publication in 
Annals of the New York Academy of Sciences 



1 

1.  Brief Review of Contemporary Data Assimilation Techniques 

Data assimilation (DA) is the process of combining a recent model background state and observations 
into an analysis that represents the best estimate of the current state of the atmosphere. This is then 
typically used as the initial conditions of a new model forecast or to investigate the physical structure of 
the atmosphere within the model domain. A number of approaches to DA have been proposed in recent 
decades, and it should be noted that in the limit of a linear model, linear observations of the model, and 
uncorrelated Gaussian errors, all of these approaches can be reduced to the same basic Bayesian 
principles. However, adding nonlinearity and complexity in any of these components introduces 
departures from the optimal Bayesian solution. In the following, a brief overview of the various 
approaches that were introduced over the past several decades is provided as they apply to TC DA. While 
TC DA uses these fundamental approaches, there are various challenges for TC applications (e.g., how to 
tailor to TC’s multi-scales, spatiotemporal observational challenges, etc). We provide a brief overview in 
section 5 to address the advancements and challenges in TC DA applications. For further detailed reading 
about DA approaches, the following review articles are recommended as good starting points: Ref. 1 for 
variational methods, Ref. 2 for ensemble methods, and Ref. 3 for particle filter methods. 

1.1 Variational methods 

In variational DA, the goal is to obtain an optimal analysis solution by defining and minimizing a cost 
function. As early as in the 1980s, the formulation of this problem was available,4 although further 
modifications were made to allow for time evolution and model error to arrive at the following 
generalized definition of the cost function J, 
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where x, yo, and t represent the model state, observed state, and time, respectively. Furthermore, B, R and 
Qt denote the background-error covariance matrix, observation-error covariance matrix, and model-error 
covariance matrix, respectively. H represents the nonlinear observation forward operator, and M is the 
nonlinear model. 

In the original, three-dimensional variational (3DVar) formulation,5 only the first two terms are defined, 
and without the time dimension (i.e., all terms are valid at t=0). The first term is known as the 
“background term” and represents the departure of the analysis state (x) from the background state (xb) 
weighted by the background-error covariance matrix (B). The second term is called the “observation 
term” and measures the deviation of the analysis state (x) from the observed state (yo) weighted by the 
observation-error covariance matrix (R). The observation forward operator (H) is needed for the 
transformation from model space to observation space. The analysis state xa is generally obtained by 
setting the derivative of the cost function to zero, i.e., ∇ 𝑎𝑎

𝑥𝑥𝐽𝐽(𝐱𝐱 ) = 0, and applying iterative techniques. 
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Further generalization that allows for the second (observation) term of the cost function to be evaluated at 
multiple times was later developed and became known as the four-dimensional variational (4DVar) 
formulation.6  The main advantage of the 4DVar against the 3DVar is its ability to evaluate the 
observation term over multiple (shorter) time steps that more realistically represent the actual time of the 
observations and also results in smaller observed-analysis differences and a more-linearized response 
within the forward operator. However, the intermediate state at each of these time steps is obtained by the 
model integration 𝐱𝐱𝑡𝑡 = 𝑀𝑀𝐱𝐱𝑡𝑡−1, thus forcing these steps to be constrained purely by the model dynamics. 
This perfect-model assumption of the original 4DVar was later termed as the strong-constraint 
formulation. 

To relax the strong constraint that requires a solution to fit the model trajectory at all times, the third term 
of the cost function was proposed,7 which defines the model-error covariance matrix (Qt) as random 
forcing that allows for 𝐱𝐱𝑡𝑡 to deviate from the model trajectory, thus 𝐱𝐱𝑡𝑡 − 𝑀𝑀𝐱𝐱𝑡𝑡−1 ≠ 0. This most 
generalized variational formulation is commonly referred to as the weak-constraint 4DVar. 

The cost function defined above involves full model fields. This general definition requires nonlinear 
operators M and H and results in a non-quadratic form of the cost function that is difficult to minimize 
numerically. Therefore, further algorithmic simplification can be achieved if M and H are linearized so 
that the cost function becomes quadratic. If one thus defines the state and model error terms as 
perturbations around the background state (xb) so that 𝒙𝒙𝑡𝑡 = 𝒙𝒙𝑡𝑡𝑏𝑏 + 𝛿𝛿𝒙𝒙𝑡𝑡 and 𝜼𝜼𝑡𝑡 = 𝛿𝛿𝜼𝜼𝑡𝑡 (i.e. only random 
model error), and further defines the linearized model as 𝐌𝐌𝑡𝑡−1,𝑡𝑡 = 𝜕𝜕𝐱𝐱𝑡𝑡 𝜕𝜕𝐱𝐱𝑡𝑡−1⁄ , one can obtain the 
following linearized approximation for the state increment: 

𝛿𝛿𝐱𝐱𝑡𝑡 ≈ 𝑀𝑀0,𝑡𝑡𝛿𝛿𝒙𝒙0 +∑ 𝐌𝐌𝜏𝜏,𝑡𝑡𝛿𝛿𝜼𝜼𝜏𝜏𝑇𝑇
𝜏𝜏=1 . 

Similarly, the forward operator can be approximated as follows: 

𝐻𝐻𝐱𝐱𝑡𝑡 ≈ 𝐻𝐻𝐱𝐱𝑡𝑡𝑏𝑏 + 𝐇𝐇𝑡𝑡𝛿𝛿𝐱𝐱𝑡𝑡, 

where 𝐇𝐇𝑡𝑡 = 𝜕𝜕𝐲𝐲𝑡𝑡 𝜕𝜕𝐱𝐱𝑡𝑡⁄ . With these linear approximations, one obtains the following incremental form of 
the weak-constraint cost function 
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, 

which is minimized over an inner loop. It should also be noted that this is the generalization of the strong-
constraint incremental formulation first proposed by Courtier et al.8 

A further transformation should finally be mentioned, which will become important in discussing the 
hybrid methods. Even though the incremental formulation described above circumvents the complexities 
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of minimizing a non-quadratic cost function, it still involves explicit definitions of matrices B0, Rt, and 
Qt, which are typically very large in dimension. To avoid this issue, a change of variables is proposed that 
simplifies the background, observation error and model error terms as follows: 

𝛿𝛿𝐱𝐱 = 𝐔𝐔𝛿𝛿𝛘𝛘, 
𝛿𝛿𝜼𝜼𝑡𝑡 = 𝐕𝐕𝑡𝑡𝛿𝛿𝛄𝛄𝒕𝒕. 

The new variables 𝛿𝛿𝛘𝛘 and 𝛿𝛿𝛄𝛄𝒕𝒕 are known as “control variables” and the matrices U and Vt are control 
variable transforms (CVTs). The idea is to choose control variables in such a way that their error 
covariances are I; i.e., 𝐔𝐔𝑇𝑇𝐁𝐁0−1𝐔𝐔 = 𝐈𝐈 and 𝐕𝐕𝑡𝑡𝑇𝑇𝐐𝐐𝑡𝑡−1𝐕𝐕𝑡𝑡 = 𝐈𝐈, which leads to the much simpler formulation of 
the cost function as follows: 

𝐽𝐽(𝛿𝛿𝛘𝛘, 𝛿𝛿𝛄𝛄𝒕𝒕) =
1
2

(𝛘𝛘)𝑇𝑇(𝛘𝛘) 

+
1
2
��𝐲𝐲𝑡𝑡𝑜𝑜 − 𝐻𝐻𝐱𝐱𝑡𝑡𝑏𝑏 − 𝐇𝐇𝑡𝑡𝐔𝐔𝛿𝛿𝛘𝛘𝑡𝑡�𝐑𝐑𝑡𝑡−1
𝑇𝑇

𝑡𝑡=0

�𝐲𝐲𝑡𝑡𝑜𝑜 − 𝐻𝐻𝐱𝐱𝑡𝑡𝑏𝑏 − 𝐇𝐇𝑡𝑡𝐔𝐔𝛿𝛿𝛘𝛘𝑡𝑡�
𝑇𝑇 

+
1
2
�(𝛿𝛿𝛄𝛄𝑡𝑡)𝑇𝑇(𝛿𝛿𝛄𝛄𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
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In this formulation, the minimization problem is simpler because the background and model error terms 
do not involve explicit error covariance matrices, but there is now the need to perform 𝛿𝛿𝐱𝐱 = 𝐔𝐔𝛿𝛿𝛘𝛘 in the 
observation term at each iteration step. Nevertheless, this form of variational DA has become the popular 
approach at operational centers due to its computational cost advantages. A detailed review of the CVT 
approach can be found in Ref. 9. 

1.2 Ensemble methods 

As variational DA applications became popular at operational forecast centers in the 1990s, several 
weaknesses were also being recognized and can be summarized as the static (and commonly simplified) 
nature of the background-error covariance matrix (B) and the need to develop the linearized and adjoint 
versions of model and observation operators M and H, respectively. At around the same time, Evensen10 
proposed the ensemble Kalman filter (EnKF) as an alternative, to replace B with a flow-dependent 
covariance matrix obtained from an ensemble of model forecasts. Once running such computationally 
expensive ensemble forecasts becoming feasible in the 2000s, the EnKF gained popularity in DA 
research.11-12 In essence, all EnKF applications are “flavors” that solve the following set of equations: 

𝐱𝐱𝑡𝑡𝑎𝑎 = 𝐱𝐱𝑡𝑡
𝑓𝑓 + 𝐊𝐊�𝐲𝐲𝑡𝑡𝑜𝑜 − 𝐻𝐻𝐱𝐱𝑡𝑡

𝑓𝑓�, 

𝐊𝐊 = 𝐏𝐏𝑓𝑓𝐻𝐻𝑇𝑇�𝐻𝐻𝐏𝐏𝑓𝑓𝐻𝐻𝑇𝑇 + 𝐑𝐑�−1, 
𝐱𝐱𝑡𝑡+1
𝑓𝑓 = 𝑀𝑀𝐱𝐱𝑡𝑡𝑎𝑎 , 

where subscripts “a” and “f” refer to analysis and forecast, respectively. K denotes the Kalman gain, and 
Pf represents the background-error covariance matrix. The equations are applied to both the ensemble 
mean and members in the same manner. 
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The first successful implementation of this general EnKF formulation became known as the stochastic 
EnKF and involved treatment of observations as random variables by explicitly perturbing them with 
random noise for the update of each ensemble member.13-14 At about the same time, deterministic versions 
of the EnKF were proposed that did not necessitate the perturbation of observations: the ensemble square-
root filter (EnSRF;15 ), the ensemble adjustment Kalman filter (EAKF;16), and the ensemble transform 
Kalman filter (ETKF;17). 

In all of these EnKF applications, observations are assumed to be simultaneous, valid at the center of the 
DA time window, although they are typically collected at varying times within that window. Thus, a 
further generalization that involves the accounting for the time dimension can be envisioned and is known 
as the ensemble Kalman smoother (EnKS;18 ), where the typical EnKF update equation can be modified to 
account for the time evolution of the forward-calculated observations 𝐻𝐻𝑡𝑡𝐱𝐱𝑡𝑡

𝑓𝑓 (three-dimensional EnKS) or 
the full Kalman gain that also involves the time evolution of 𝐏𝐏𝑡𝑡

𝑓𝑓 (four-dimensional EnKS), as indicated by 
the subscript t. 

As with all DA applications, the EnKF and its variants bear certain limitations that cause them to deviate 
from the optimal-filter solution. One such limitation is the ensemble size that arises from practical 
restrictions due to availability of computing resources. This causes severe under-sampling in the 
background-error covariance matrix Pf that should theoretically represent the large degrees of freedom of 
the relevant atmospheric processes resolved in the numerical model. One popular, albeit ad-hoc, approach 
is known as covariance localization, which is either carried out explicitly in ensemble space or implicitly 
in observation space.19 But even with covariance localization, ensemble variance is still commonly found 
to be insufficient due to model and observation representativeness errors that are not appropriately 
accounted for. Further techniques are therefore developed that aim to inflate ensemble variance explicitly 
through various approaches, such as additive inflation that typically adds white noise qt to model 
dynamics so that 𝐱𝐱𝑡𝑡+1

𝑓𝑓 = 𝑀𝑀𝐱𝐱𝑡𝑡𝑎𝑎 + 𝑞𝑞𝑡𝑡, where 𝑞𝑞𝑡𝑡~𝑁𝑁(0,𝐐𝐐𝑡𝑡) as before,14 multiplicative inflation such as 
relaxation to prior perturbation (RTPP;20 ), and relaxation to prior spread (RTPS;21). A further generalized 
discussion of these methods can be found in Ref. 22. 

1.3 Hybrid Methods 

As explained in the previous two sections, both variational and EnKF methods have weaknesses that need 
to be circumvented, by mostly ad-hoc methods, to be successful. It therefore makes sense to somehow 
combine these two methods to take advantage of their strengths while minimizing their weaknesses. The 
earliest form of the hybrid implementation was proposed for a 3DVar application,23  in which the 
background-error covariance matrix was represented as a weighted combination of a static matrix B and 
an ensemble-based matrix Pf as follows: 

𝐁𝐁ℎ𝑦𝑦𝑏𝑏 = (1 − 𝛼𝛼)𝐏𝐏𝑓𝑓 + 𝛼𝛼𝐁𝐁, 

where the weighting factor 𝛼𝛼 ranges from 0.0 to 1.0 and its value typically depends on the application. 
Since the rank of Pf is limited by design but there is no theoretical restriction on the rank of B, their linear 
combination in this way results in a higher-rank Bhyb that is expected to partially ameliorate the issue of 
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sampling error encountered in pure-EnKF applications. Meanwhile, Lorenc24 suggested to partition the 
analysis increment into two as follows: 

𝛿𝛿𝐱𝐱 = 𝛽𝛽1𝛿𝛿𝐱𝐱1 + 𝛽𝛽2𝛿𝛿𝐱𝐱2, 
𝛿𝛿𝐱𝐱1 = 𝐁𝐁1 2⁄ 𝐯𝐯1, 

𝛿𝛿𝐱𝐱2 = 𝐏𝐏𝑓𝑓1 2⁄ 𝐯𝐯2. 

In practical terms, this is equivalent to augmenting the standard 3DVar control variables 𝐯𝐯1 with a new set 
𝐯𝐯2 that represents the preconditioning based on the ensemble covariance 𝐏𝐏𝑓𝑓. Wang et al.25 later provided 
proof that the approaches in Refs. 22-23 are mathematically equivalent. Wang et al.26 later applied the 
approach23 in an ETKF-3DVar scheme. 

It should be noted that Lorenc27 suggested clarification to the various (and sometimes confusing) past 
usage of nomenclature for hybridization. This becomes especially important in 4DVar applications 
because the time dimension introduces a choice for whether to minimize in model space (thus requiring 
linear and adjoint operators as in pure 4DVar), in observation space (thus circumventing the use of linear 
and adjoint operators) or in dual space63 (which also requires the liner and adjoint operators). This choice 
led to the appearance of the three main approaches in the last decade. Namely, hybrid 4DVar, En4DVar 
and 4DEnVar all utilize ensemble-based background-error covariance statistics in a 4DVar system, but 
hybrid 4Dvar and En4DVar maintains the linear and adjoint formulation of 4DVar while 4DEnVar 
replaces it with the observation-space formulation. Despite their differences, En4DVar and 4DEnVar are 
both known as “pure” EnVar systems. The term “hybrid”, then, applies only to the further blending of the 
ensemble-based and static error covariances. Nevertheless, the EnVar applications in practice generally 
involved the additional hybrid component (e.g., Refs. 28-30). 

1.4 Particle filters 

As EnKF and variational DA approaches gradually evolved into hybrid-EnVar/4DVar methods, and such 
applications demonstrated generally superior performance to EnKF or 4DVar alone (e.g., Ref. 31), their 
limitations also became clear. For instance, En4DVar inherits the limitations of 4DVar in its continued 
reliance on linearized operators and adjoints, while 4DEnVar is naturally restricted by the accuracy of the 
underlying ensemble and is unable to account for advecting covariance statistics as the observation-space 
error term is evaluated at the initial time of the assimilation window. A common underlying thread for all 
of these issues is the assumptions of linearity and Gaussianity in both the EnKF and 4DVar approaches 
(and their hybrids by extension): the prediction problem becomes increasingly nonlinear as mesoscale and 
convective-scale processes are involved, resulting in increasingly suboptimal solutions in DA. 

Particle filters offer distinct advantages over the EnKF and 4DVar approaches because by design they are 
able to operate on non-Gaussian distributions and don’t require specific assumptions for underlying 
probability density functions (PDFs). Instead, the particle filter approximates Bayes’ theorem by defining 
a prior (forecast) PDF as a sum of weighted individual particles that each represent a delta function. The 
original Bayes’ theorem is defined as follows: 

𝑝𝑝(𝐱𝐱|𝐲𝐲) =
𝑝𝑝(𝐲𝐲|𝐱𝐱)𝑝𝑝(𝐱𝐱)

𝑝𝑝(𝐲𝐲)
, 
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where 𝑝𝑝(𝐱𝐱), 𝑝𝑝(𝐲𝐲|𝐱𝐱), and 𝑝𝑝(𝐱𝐱|𝐲𝐲) are the prior PDF, conditional observation likelihood given the prior 
PDF, and posterior PDF, respectively, and 𝑝𝑝(𝐲𝐲) = ∫𝑝𝑝(𝐲𝐲|𝐱𝐱)𝑝𝑝(𝐱𝐱)𝑑𝑑𝐱𝐱 represents the total observation 
probability as the normalization factor. In the standard bootstrap particle filter, the prior PDF is then 
approximated by the following sum: 

𝑁𝑁
1

𝑒𝑒

𝑝𝑝(𝐱𝐱) ≈ �𝑤𝑤𝑓𝑓
𝑁𝑁 𝑖𝑖 𝛿𝛿(𝐱𝐱 − 𝐱𝐱𝑓𝑓𝑖𝑖 ), 
𝑒𝑒 𝑖𝑖=1

where Ne is the number of particles, 𝛿𝛿 represents the delta function, and the prior weights are 
𝑤𝑤𝑓𝑓
𝑖𝑖 = 1/𝑁𝑁𝑒𝑒. Applying the Bayes’ rule to the posterior pdf then yields the posterior particle weights as 

follows: 

𝑤𝑤𝑎𝑎 𝑝𝑝(𝐲𝐲|𝐱𝐱𝑓𝑓
𝑖𝑖 = 𝑖𝑖 )

∑𝑁𝑁
. 

𝑒𝑒
𝑗𝑗=1 𝑝𝑝(𝐲𝐲|𝐱𝐱𝑓𝑓𝑗𝑗 )

However, as Snyder et al.32 discussed, the standard bootstrap form of the particle filter suffers from 
particle weight collapse for high-dimensional applications if one of the likelihoods 𝑝𝑝(𝐲𝐲|𝐱𝐱𝑓𝑓𝑖𝑖 ) is much 
larger than the rest, i.e., there is not a sufficient number of particles that sample the prior likelihood near 
the observation. In fact, the minimum number of particles grows exponentially with the number of state 
variables needed to be observed. This issue is also known as weight degeneracy. 

Because of the high dimensionality of atmospheric DA applications, new methods need to be developed 
to avoid or minimize the impact of weight degeneracy in particle filters. As van Leeuwen et al.3 
discussed, four main approaches to this issue were developed in this area. Proposal density particle filters 
(e.g., Ref. 33) apply an additional proposal distribution to allow the posterior particles to become more 
densely concentrated near the observations. In transportation particle filters (e.g., Ref. 34), the idea is to 
rather define a matrix D that transforms prior particles directly to posterior particles, i.e., 𝐗𝐗𝑎𝑎 = 𝐗𝐗𝑓𝑓𝐓𝐓, 
where the prior and posterior ensembles X are composed of Ne realizations of particles (1⁄𝑀𝑀 , … , 1⁄𝑀𝑀)𝑇𝑇 
and (𝑤𝑤1, … ,𝑤𝑤𝑀𝑀)𝑇𝑇, respectively, and M represents the size of the state vector. The coupling matrix is 
designed so that T ≥ 0, ∑𝑀𝑀 T = 1/M, and ∑𝑀𝑀𝑖𝑖𝑗𝑗 𝑖𝑖=1 𝑖𝑖𝑗𝑗 𝑗𝑗=1T𝑖𝑖𝑗𝑗 = 𝑤𝑤𝑖𝑖. A typical application attempts to minimize 
the total distance between the posterior and the prior in state space. A third approach introduces the 
concept of localization (Refs. 35-37) that attempts to minimize the negative effects of weight degeneracy 
by only allowing particles to be impacted by nearby observations. However, this is not trivial because a 
smooth distribution of the global set of particles from a set of locally updated particles is not always 
guaranteed. Finally, a hybrid approach with an EnKF scheme (e.g., Ref. 38-39) or an EnVar scheme40 can 
be adopted to improve the benefits of localization. 

2.  Overview of the Global Operational NWP Models and DA Systems 

In this section, the global NWP models and DA systems for several operational centers are described. 
Most of these global NWP systems use horizontal resolutions ranging from ~10 to 20 km with a diverse 
range of vertical resolutions and provide numerical weather predictions out to 5-10 days. Of the DA 
systems for the global analysis, most use a form of the incremental 4DVar method.8 Various ensemble 
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techniques (e.g. local ensemble transform Kalman filter (LETKF)) are used in the DA systems to account 
for the flow-dependent “errors of the day” for the background error covariances. For TC applications, 
these model upgrades (e.g. model resolutions, model physics configurations, land/ocean/wave coupling) 
and observation DA advancements (e.g. new model state variables, new observing platforms) contributed 
to the TC forecast improvements. This section is not intended to be exhaustive to list all the aspects that 
affect TC predictions, but simply an overview of the overall NWP system features that are relevant to TC 
forecasting. Table 1 summarizes the name, horizontal and vertical resolution of the global NWP models 
and corresponding DA systems, including the DA technique, ensemble component, coupling status and 
the radiative transfer model (RTM). Note that two main RTMs (Radiative Transfer for TOVS (RTTOV); 
Community Radiative Transfer Model (CRTM)) are used in the listed NWP centers. Figure 1 illustrates 
the typical verification conducted by the National Hurricane Center (NHC) every year. Global models are 
mostly used in the track verification, while regional or statistical models are verified for the intensity 
forecasts. Full acronyms of each model can be found at 
https://www.nhc.noaa.gov/verification/pdfs/Verification_2020.pdf. In general, global models have 
superior track forecast skill than the regional models, likely due to better representation of the large-scale 
environment flow from the global model, but regional and statistical models outperform their global 
counterparts on intensity forecasts, largely attributed to factors such as higher model resolution, better 
physics and convection schemes for TCs, better use of TC inner-core observations, etc., from the regional 
dynamic models. 
 

Table 1: Summary of NWP Centers’ global deterministic models and DA systems 

Model DA system 

Institute Horz. Vert. 
(Country) Name res. res. Technique Ensemble Coupling RTM Use of TC Observations 

ECMWF IFS T1279co L137 (to Increm. EDA Land, RTTOV No use of TCvitals to relocate 
(Europe) (9km) 0.01hPa) 4DVar ocean, vortex; all-sky satellite radiance 

 and assimilation for some microwave 
wave sensors; use reconnaissance 

dropsondes 

Met Unified 10 km   L70 Hybrid En- - RTTOV Uses TCvitals to initialize a vortex; 
Office Model at mid- (~80km) Increm. 4DEnVar uses reconnaissance dropsondes 
(UK) latitudes 4DVar 

NCEP FV3-GFS T1534 L127 (~ 4DEnVar LETKF - CRTM Assimilates minimum SLP from 
(USA) (13km)  80km) with 4D- TCvitals, but otherwise does not 

IAU use vortex relocation; all-sky 
radiance assimilation for some 
MW sensors; use reconnaissance 
dropsondes and flight-level data  

FNMOC NAVGEM T681 L60 ( to Hybrid ET - CRTM Uses TCvitals to generate synthetic 
(USA) (19km)  0.04hPa) Increm. observations for vortex 

4DVar initialization; uses reconnaissance 
dropsondes 

JMA JMA- TL959 L128 (to Increm. LETKF - RTTOV Uses TC bogus data to initialize a 
(Japan) GSM (20km)  0.01hPa) 4DVar TC vortex; all-sky radiance 

assimilation for some MW sensors 

https://www.nhc.noaa.gov/verification/pdfs/Verification_2020.pdf
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Figure 1: Preliminary 2021 hurricane season track (left) and intensity (right) forecast verification for the Atlantic 
Basin. Figure courtesy of Blake & Brennan.41 The NWP operational models reviewed in this overview are EMXI 
(ECMWF global model), GFSI (NCEP global model), NVGI (U.S. Navy global model) and HWFI (NCEP regional 
model). 

2.1 ECMWF 

The Integrated Forecast System (IFS) contains a comprehensive Earth-system model and DA system, and 
has been run at the ECMWF since 2004. The spectral atmospheric model uses the efficient semi-
Lagrangian semi-implicit scheme to solve the hydrostatic and the shallow-atmosphere approximations of 
the governing equations.42 The IFS model in the vertical is discretized using a finite-element scheme. The 
IFS also introduced a reduced Gaussian grid in the horizontal, the Legendre transforms, and 
improvements to the model’s basic architecture to further improve the computation efficiency.43 The most 
recent cycle of the IFS (CY47R1) implemented in June 2020 has a native horizontal resolution of ~9 km 
with 137 vertical levels (up to 0.01hPa). The atmospheric DA uses a continuous long assimilation 
window44 with hybrid incremental 4DVar8 for the high resolution (HRES) deterministic forecast system, 
along with 51 lower resolution members for the Ensemble of Data Assimilation (EDA;45 ) that provides 
the perturbed initial conditions for the ensemble (ENS). The background error covariances are a linear 
combination of a pre-existing climatological background error covariance and a flow-dependent 
background error covariance inferred from the lower-resolution EDA. ECMWF also runs an ocean 
analysis system (OCEAN5) to provide ocean and sea-ice initial conditions for HRES and ENS. Coupled 
ocean and ocean wave models also provide SST, surface stress, Stokes drift and turbulent energy flux at 
the ocean surface. The atmosphere-ocean coupling that was introduced in the IFS cycle 45r1 on the 5 June 
2018 resulted in significant improvements for TC intensity forecasts.46  

ECMWF does not use information from the Tropical Cyclone Vitals Database (TCvitals) in its DA 
system or through a vortex relocation.47 Satellite observations are the dominant data sources around 
tropical storm environment.48 Various efforts have been made to improve the use of scatterometer 
winds,49  expand all-sky satellite radiances from a range of microwave and infrared instruments (e.g. Ref. 
50), and improve dropsonde assimilation47 to better initialize TC analyses and forecasts. 

Recent upgrades includes the introduction of single-precision for HRES and ENS to significantly reduce 
the arithmetic precision in many of the NWP model calculations without compromising the quality of 



9 

weather forecasts, additional TC tracks and graphical products from the 0600 and 1800 UTC forecast 
cycles, all-sky assimilation of AMSU-A, and improved physical basis for moist processes, etc. Cycle 
upgrades 47R3 implemented in October 2021 improved TC position error by 10% in HRES and ENS.  
The most up-to-date information can be found here: 
https://confluence.ecmwf.int/display/FCST/Changes+to+the+forecasting+system. 

2.2 Met Office 

The Met Office Unified model (UM) is designed for numerical weather prediction (ranging from a few 
days) to seasonal forecasting and climate (hundreds of years) modeling. The UM uses semi-lagrangian 
and semi-implicit formulations to solve the compressible non-hydrostatic equations of motion. The global 
model is configured at a horizontal resolution of 0.140625° x 0.09375° (about 10 km at mid-latitudes) 
with 70 vertical levels. The DA system employs a hybrid incremental 4DVar method.30 Recent 
improvement of the model ENDGame (Even Newer Dynamics for General atmospheric modelling of the 
environment) dynamic core for accuracy, stability and scalability and increased deep entrainment rate in 
the convection scheme resulted in better representation of TCs in its global model.51 Note that TCvitals 
are used in the DA system to initialize the vortex.52 Reconnaissance dropsonde data, except those 
designated as ‘eyewall’ or ‘rainband’ data, are routinely assimilated in the DA system whenever they are 
available (personal communication with Heming, 2021). 

In 2019, the Met Office introduced the parallel suite 43 (PS43) that provided significant upgrades to the 
global and ensemble systems, atmospheric physical process in the global model and an independent soil 
moisture assimilation (https://www.metoffice.gov.uk/services/data/met-office-data-for-reuse/ps43_aws). 
The global ensemble replaced the ETKF scheme to an ensemble of 4DEnVars (En4DEnVar), which is an 
ensemble of initial conditions (i.e. analyses) generated from their respective DA cycles. The model 
physics change was the first major upgrade since the implementation of ENDGame with PS34. The 
physics package Global Atmosphere 7.2 (GA 7.2) upgraded the deep convection, the characterization of 
cloud, radiation, warm rain microphysics and boundary-layer processes. Overall this change improved TC 
track forecasts and strike probabilities.   
New development of a fully coupled forecast system including atmosphere, land, ocean and sea ice 
components is scheduled to be operational soon, along with a weakly coupled atmosphere-ocean DA 
system to better utilize observations from various earth system components. Research topics in 
development for operational transition can be found in 
https://www.metoffice.gov.uk/research/weather/research-to-operations/. 

2.3 NCEP 

NOAA’s National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) 
employed a finite-volume cubed-sphere (FV3) dynamic core53 as the Next Generation Global Prediction 
System (NGGPS) starting in June 2019. The operational model run at the Environmental Modelling 
Center (EMC) FV3-GFS v15 maintains a horizontal resolution of 13 km with 127 vertical levels 
extending up to 80 km. The FV3-GFS provides numerous improved physics parameterizations compared 
to the previous version of the GFS. The improved physics package in the FV3-GFS, particularly with the 
GFDL microphysics,54  the Yonsei University (YSU) PBL scheme,55 and a mixed-layer ocean model,56 
showed improvement in hurricane intensity prediction over all basins.57  
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The FV3-GFS v15 DA utilized the hybrid 4DEnVar algorithm58 with heritage from the previous version 
of the global data assimilation system (GDAS). Several changes to the DA system were made along with 
the initial implementation of FV3-GFS in June 2019. These included an increase in the analysis increment 
and ensemble resolution, the addition of Advanced Technology Microwave Sounder (ATMS) all-sky 
(clear and cloud-affected) radiances, Infrared Atmospheric Sounding Interferometer (IASI) moisture 
channels, an upgrade to the quality control of GOES atmospheric motion vectors (AMV) and the Cross-
Track Infrared Sounder (CrIS) usage, and removal of TC relocation using TCVitals 
(https://www.weather.gov/media/notification/scn19-40gfs_v15_1.pdf). 

The FV3-GFS v16 upgrade on 22 March 2021 provides many model upgrades and DA changes 
(https://www.weather.gov/media/notification/pdf2/scn21-20gfs_v16.0.pdf). This is the first major 
upgrade to FV3-GFS since the replacement of the spectral dynamical core in June 2019. The number of 
model vertical levels is extended from 64 to 127 layers with a model top up to ~80 km. The model 
physics upgrades include better gravity wave parameterization, better representation of the PBL process 
using a scale-aware turbulent kinetic energy (TKE) based moist eddy-diffusivity mass-flux (EDMF) 
vertical turbulence mixing scheme (EDMF-TKE), and improved solar radiation in the radiation package. 
The new version of the hybrid 4DEnVar system adds a new 4D incremental analysis update (IAU) and 
replaces the Ensemble Square Root Filter with the LETKF for the ensemble covariances. Other DA 
changes include adding correlated observations errors for hyperspectral infrared sounders, updating the 
variational quality control and applying the Hilbert curve for high-density observations, and adding the 
assimilation of high-density flight-level wind, temperature, and moisture observations in the tropical 
storm environment.59 

2.4 US Navy - FNMOC and NRL 

The Navy Global Environmental Model (NAVGEM) is the U.S. Navy’s global NWP model, which is 
developed by the U.S. Naval Research Laboratory (NRL), and is run operationally by the Fleet Numerical 
Meteorology and Oceanography center (FNMOC). The spectral NAVGEM model uses a semi-
Lagrangian semi-implicit dynamic core with advanced physical parameterizations.60 The current 
operational model is configured at a horizontal resolution of 19 km (spectral triangular truncation of 
T681) with 60 vertical levels up to 0.04 hPa.  

The NRL Atmospheric Variational Data Assimilation System-Accelerated Representer (NAVDAS-AR)61-

62 dual-space strong-constraint 4DVar is used with NAVGEM. The operational NAVDAS-AR was 
upgraded in October, 2016 to include a hybrid background error covariance.63 The hybrid background 
error covariances are currently a linear combination with 75% of the initial background error covariance 
derived from the static background error covariance and 25% derived from an 80-member flow-
dependent ensemble. The ensemble members are generated using the operational ensemble forecasting 
system64-65 applied at NAVDAS-AR inner loop solver resolution of T119 (~110 km). The operational 
ensemble is based on a local formulation of the Bishop and Toth66 ensemble transform technique. 
TCvitals are used to initialize a modified Rankine vortex that is combined with the model background. 
From this, synthetic observations of wind profiles and surface pressure are generated for assimilation with 
the hybrid NAVDAS-AR.67 
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The US Navy’s next generation NWP system - NEPTUNE (Navy Environmental Prediction sysTem 
Utilizing a Nonhydrostatic Engine68 is currently being developed and will provide a unified system for the 
global and limited area applications with capabilities for multi-scale nonhydrostatic dynamics, scale-
aware parameterization with static mesh refinement for limited area applications, and flexible, accurate 
and conservative numerical computations. The Nonhydrostatic Unified Model of the Atmosphere 
(NUMA;69) dynamic core uses a three-dimensional spectral element technique with a sphere-centered 
Cartesian coordinate system on the Cubed sphere. The NEPTUNE will also provide coupling with ocean, 
land and sea ice. The NEPTUNE data assimilation component is being developed using the Joint Center 
for Satellite Data Assimilation’s (JCSDA) JEDI (Joint Effort for Data assimilation Infrastructure) 
community-supported initiative. The initial application of the NEPTUNE-JEDI system will be a global 
3DVar system.70 

2.5 JMA 

The JMA Global Spectral Model (GSM) and the Global Ensemble Prediction System (GEPS) models are 
often used for TC information. The current GSM (GEPS) is run at about 20 km (40 km) horizontal 
resolution (spectral triangular truncation of TL959 and TL479, respectively) with model top at 0.01 hPa. 
The JMA GSM uses the incremental 4DVar approach8 to generate initial conditions at a horizontal 
resolution of ~55 km. The background error covariance is a weighted average of climatological and 
ensemble-based background error covariances71 and is further improved with increasing ensemble size 
and hybrid covariance weight.72  

The JMA has devoted significant effort to the all-sky MW and IR radiance assimilation in the global DA 
system.50,73 Initial testing of the all-sky MW radiance assimilation resulted in significant improvement of 
TC analyses and forecasts (Figure 5 in Ref. 50). In December 2019, JMA operational global NWP system 
began assimilating all-sky radiances from the MW imagers and MW water-vapor sounders.74 For TCs 
over the NW Pacific, typhoon bogus data (also known as pseudo-observations) are derived empirically 
and then are assimilated to obtain the initial state of TCs in the model.75 These data typically consist of 
the mean-sea-level pressure (MSLP) and profiles of wind vectors around TCs. 

The JMA global NWP upgrade in March 2021 increased model vertical level from 100 to 128 with the 
model top same at 0.01 hPa and improved soil moisture analysis.76 The JMA placed high priority in the 
next twenty years to improve the prediction of heavy rain and storm surges caused by typhoons, 
implement all-sky assimilation of microwave and infrared satellite radiances, and develop artificial 
intelligence (AI) technology for applications in physics parameter optimization, observation data quality 
control and other areas.77 Latest activities on the NWP development can be found here: 
https://www.jma.go.jp/jma/en/Activities/nwp.html. 
  



12 

3.  Overview of the Regional Models 
There are a number of operational regional models that can provide skillful TC forecasts, such as 
COAMPS-TC system78 run by FNMOC, TyphoonWRF (TWRF;79-80) run by Taiwan’s Central Weather 
Bureau, and NCEP’s Hurricane Weather Research and Forecasting (HWRF) and Hurricanes in a Multi-
scale Ocean-coupled Non-hydrostatic model (HMON). Note that although TWRF uses a 3D-Var system, 
the TC intensity forecasts are inferior compared to the global ECMWF and NCEP models.80  COAMPS-
TC does not have an operational DA system to generate the initial vortex, but there are some ongoing 
research efforts to integrate COAMPS-TC with either 3D-Var, 4D-Var or ensemble system. The vortex 
initialization scheme in the operational COAMPS-TC uses the TC warning messages as input, in 
combination with initial and boundary conditions from either a  GFS (abbreviated as CTCX) or a 
NAVGEM (abbreviated as COTC). HWRF model is one of the leading regional models with an advanced 
DA system, and provides more skillful intensity forecasts than the global models on average. Because of 
this, the HWRF model and corresponding DA specifics are discussed in great detail in this section. Also, 
given that a new hurricane model at NOAA – the Hurricane Analysis and Forecast System (HAFS) - is 
scheduled to replace both HWRF and HMON in June 2023, a brief review on HAFS is provided as well. 

3.1 NCEP HWRF 

The HWRF model is run on a per-storm basis with a variety of configurations depending on the basin of 
interest. Configurations outside the North Atlantic (NATL) and Eastern North Pacific (EPAC) use no data 
assimilation and are instead initialized with the NCEP GFS analysis for the large-scale environment along 
with an algorithm that relocates and adjusts the vortex from the previous 6-h HWRF forecast to better 
match the location and structure in TCVitals.  In the NATL and EPAC, the relocated and adjusted 6-h 
HWRF vortex is inserted into the GFS 6-h forecast to provide a first-guess for 3DEnVar. The remainder 
of this subsection focuses on the data-assimilation configuration of HWRF. 

Within the NATL and EPAC, HWRF utilizes one of two different data assimilation approaches 
depending on available resources (Figure 2).  For lower priority storms that are weaker, are not threats to 
land, and do not have reconnaissance data, the flow-dependent covariance for 3DEnVAR is provided by 
the NCEP GDAS global ensemble members.  While this covariance choice is suboptimal for assimilating 
data in the TC vortex, it nevertheless performs reasonably well for weaker TCs.  For hurricanes, however, 
this configuration can perform poorly with short-term negative intensity bias that typically worsens as the 
TC intensity increases.  Tong et al.82 thoroughly described this configuration of HWRF and examined its 
performance with various types of reconnaissance data. 

A more advanced implementation of HWRF is used for priority storms that are likely to be significant 
threats to land and have reconnaissance data or for stronger oceanic storms, resource permitting.  This 
implementation of HWRF is similar to that in Lu et al.83, wherein a cycled EnKF provides mesoscale 
error covariance for the variational minimization.  The EnKF ensemble is run at a somewhat lower 
resolution than the deterministic control, and subsequent to the EnKF update, the analysis mean is 
replaced by the 3DVar analysis.  Lu et al. 83 and Pu et al.84 both showed that using mesoscale error 
covariance for 3DEnVar significantly reduces short-term negative intensity bias endemic to the legacy 
system where global covariance is used. Consistent results were found over a much larger sample in 
internal testing at EMC. A recent addition to this configuration was the inclusion of stochastic physics 
perturbations, which were found to increase ensemble spread and provide superior analyses and 
forecasts.81   
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Figure 2. Workflow of the HWRF data assimilation system, adopted from Zhang et al.81  Under the advanced 
configuration, all tasks are run. In the legacy configuration, the ensemble members and EnKF (top of figure) do not 
run. 

Even with its more advanced configuration, asymmetric inner core analysis increments require further 
treatment in HWRF.  Tong et al.82 showed that asymmetric inner core data coverage (e.g., from 
reconnaissance) can cause imbalances in analysis increments, which degrade the short-term forecast with 
substantial negative intensity bias.  Lu et al.83 demonstrated that 3DEnVar is particularly susceptible to 
this problem when used with a 6-h DA window, which is current operational practice.  Possible long-term 
solutions to this problem include using 4DEnVar or more frequently cycling 3DEnVar; both improved 
short-term negative intensity bias endemic to HWRF.  As a stop-gap measure to combat inner-core 
imbalances, early versions of HWRF did not use any low-level, inner core analysis increments but instead 
relied on the first guess supplied by the vortex initialization procedure.  In 2018 the operational HWRF 
employed a spectral filter to instead truncate high-wavenumber analysis increments near the inner core, 
which allows for much greater use of inner core reconnaissance data.  Full increments are only allowed 
for tropical storms weaker than 50 kt.  Above that intensity but below the hurricane threshold, increments 
with wavenumbers larger than 1 are removed from the analysis within the inner 150 km.  For hurricanes 
only symmetric increments are allowed within 150 km.  Internal testing has shown that the filter does 
indeed improve short-term negative intensity bias. 

HWRF is the only operational model in the world to use all aircraft reconnaissance data that is transmitted 
in real-time (for more information on much of this data, see the next section).  The aforementioned 
developments specifically targeting inner core data assimilation allowed for increased use of the data 
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compared to the initial assimilation of tail-Doppler velocity data from the NOAA WP-3D in 2013.  Since 
that time, flight-level measurements and Stepped Frequency Microwave Radiometer (SFMR) data were 
added to the data that HWRF assimilates.  In addition, HWRF now uses an algorithm developed at 
NOAA AOML that processes WMO-TEMPDROP messages to estimate the location of dropsondes (e.g., 
Ref. 85).  This allows for more complete usage of dropsonde data in stronger TCs since dropsondes can 
travel several tens of kilometers in high-wind environments.  In addition to reconnaissance data, HWRF 
makes routine use of clear-sky satellite radiances, enhanced atmospheric motion vectors, ground-based 
Doppler velocity, and other conventional observations used at many national centers (see Tong et al.82 for 
more information).  Largely as a result of improving data assimilation, HWRF now produces some of the 
most skillful operational model tropical cyclone intensity forecasts in the NATL and EPAC.  

3.2 NCEP HAFS 

Developed under a unified global and regional modeling framework, known as the Unified Forecast 
System (UFS) framework, HAFS is NOAA’s next-generation atmosphere-ocean-wave coupled, multi-
scale, high-resolution regional model system with TC-following moving nests and TC inner-core DA. 
HAFS is developed based on FV3 modeling system to provide TC prediction on track, intensity, storm 
size, and other TC related guidance (e.g. rainfall, tornado, storm surge). HAFS is planned to have the 
initial operational capability (IOC) ready for the 2023 hurricane season, replacing current operational 
hurricane prediction systems, HWRF and HMON. 

Development on HAFS data assimilation began in the fall of 2021, and testing continues towards the 
IOC.  As of the writing of this manuscript, the HAFS IOC will likely function similarly to the 
implementation of HWRF for “low priority” storms.  That is, covariance for 3DEnVar will be provided 
by NCEP GDAS.    HAFS uses significantly more computational resources than HWRF, and an advanced 
implementation with a cycled EnKF cannot be afforded for the IOC.  Nevertheless, developmental testing 
shows that HAFS has commensurate intensity skill and superior track skill to HWRF, likely owing to 
improved model physics and an improved dynamic core.  Current plans include two different 
implementations of HAFS with slightly different physics and different implementations of the vortex 
initialization procedure that precedes data assimilation. 

Unlike HWRF, HAFS has been designed with the flexible capability to explore other options for data 
assimilation.  Future implementations will certainly use a cycled EnKF, likely in a configuration cycled 
over an entire basin.  Such a configuration will allow for superior treatment of satellite radiance data, and 
all-sky radiance assimilation is currently being explored in experimental versions of HAFS.  Also being 
explored is superior treatment of error covariance with 4DEnVar, a multi-scale technique being developed 
by the University of Oklahoma, and more frequent cycling of the analysis. 

4. TC Observations 

The lack of direct observations in and around TCs remains one of the main challenges for accurately 
analyzing the vortex structure with data assimilation. The common conventional observations (Table 2, 
not intended to be exhaustive) assimilated in many operational models are generally insufficient for the 
task.  In fact, there are often very few conventional observations available for TCs over the open ocean.  
Other specialized data, such as high-resolution reconnaissance observations for TCs within the range of 
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aircraft or Uncrewed Airborne Systems (UASs), or ground-based radars for TCs close to the coast, are 
extremely helpful but often not available.  For that reason, operational models that need to capture the 
initial vortex intensity often resort to some form of artificial initialization as a preprocessing step (e.g, 
Tong et al.,82) before data assimilation.  Such initialization schemes often introduce their own set of 
problems, and as such, it would be desirable to diminish their use in the future. The emerging use of other 
data types, such as rapid-scan AMVs and all-sky radiances are a few examples that could supplement 
reconnaissance and ground-based radar for superior analysis of TC vortices. These additional data types 
will be discussed in the following sections. 
 

Table 2: Summary of conventional observation types. Acronyms in the table include Meteorological 
Aerodrome Reports (METAR), Coastal-Marine Automated Network (C-MAN), Pilot Balloon (PIBAL), Aircraft 
En-route Report (AIREP), Aircraft Meteorological Data Relay (AMDAR), Meteorological Data Collection and 
Reporting System (MDCRS), Tropospheric Airborne Meteorological Data Reporting (TAMDAR), Velocity 
Azimuth Display (VAD), Global Navigation Satellite Systems (GNSS) Radio Occultation (RO). 

Conventional type Description 

Surface Land (METAR and Synoptic) Surface wind, temperature, humidity, and pressure over land 

Surface marine (ship, buoy, C-MAN, 
tide gauge) 

Surface wind, temperature, humidity, and pressure over water or coastal regions  

Rawinsonde, dropsonde Upper air wind, temperature, humidity, and pressure measured from rawinsondes 

PIBAL Upper air wind from pilot balloons 

AIREP, AMDAR, MDCRS, 
TAMDAR 

Upper air wind, temperature, humidity, and pressure measured from aircraft 

VAD winds Upper air winds estimated from Doppler radar (velocity azimuth display) 

AMV winds Atmospheric Motion vectors: tropospheric winds estimated from tracking clouds or 
water vapor features in successive satellite imagery  

Scatterometer winds Ocean surface winds estimated from scatterometer backscatter 

Ocean surface winds Ocean surface winds from microwave radiometers 

GNSS-RO Radial occultation or refractivity  

GNSS path delay Total zenith delay and/or total precipitable water 

TCVitals TC center location, intensity, and minimum sea level pressure 

4.1 Reconnaissance 

Inner-core reconnaissance missions in the North Atlantic and Eastern North Pacific basins typically use 
Air Force Reserve C-130 (low to medium altitude) and NOAA WP-3D (low to medium altitude) aircraft 
to collect critical observations of the location, strength, and structure of the TC circulation, while the 
environmental sampling near the TC is typically achieved by the NOAA G-IV aircraft (high altitude). 
These aircraft are equipped with a variety of instruments that sample the wind, temperature, moisture, 
pressure, precipitation, and ocean surface and subsurface temperature, current, and wave fields within and 
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around TCs (e.g., flight-level measurements, dropsondes, airborne Doppler radar, SFMR, lower-fuselage 
radar, and airborne expendable bathythermographs/current profilers). NOAA and NASA teamed together 
in recent years to use UAS to collect TC observations.86-89 UAS such as the Global Hawk can sample the 
TC up to 24 hour at an altitude of 60,000 ft (~18 km), providing not only dropsonde observations, but also 
remotely-sensed radar, microwave, and infrared observations.86,90-92 

Tropical cyclones in other oceanic basins are occasionally observed by reconnaissance missions, such as 
those from the Observing System Research and Predictability Experiment (THORPEX) Pacific Asian 
Regional Campaign (T-PARC;93) and the Dropsonde Observations for Typhoon Surveillance near the 
Taiwan Region (DOTSTAR;94), where dropsondes observations were the primary datasets. 

The assimilation of dropsonde data has long been known to provide beneficial impact for TC track 
forecasts.  For example, Ditchek et al.95 reviewed the results from 30 papers starting from the early 1990s 
and found that dropsonde assimilation alone has improved track forecasts by about 10% on average.  This 
paper also presented an ongoing multi-year assessment of dropsonde impact using the basin-scale version 
of the 2020 HWRF.  The study authors found a track improvement of up to 5%, which is a bit lower than 
previous large-scale studies. This might mean that the dropsondes have less of an effect on track errors as 
the use of other data sources (e.g., from satellites) increases.  

However, other reconnaissance data is also beneficial for reducing TC track errors.  Weng & Zhang96 
published the first large (e.g., 100s of cases) assessment of the impact of inner-core DA with a research 
system.  They found that track forecasts improved by 10-15% when flight-level data and dropsondes were 
assimilated.   In another study with a large number of test cases, Tong et al.82 used the 2013 version of 
HWRF, and found that TDR, SFMR, and flight-level data improved TC track forecasts by roughly 10%.  
More recently, in preparation for the 2021 GFS upgrade, NCEP found a 5-10% improvement in TC track 
forecasts when flight-level reconnaissance observations were assimilated (personal communication with 
Daryl Kleist).  This shows that even with the expanding data availability from other sources, improving 
the use of reconnaissance observations can still benefit track forecasts. 

A growing body of work also shows reconnaissance data can improve TC intensity forecasts.  In their 
composite assessment, Ditchek et al.95 found that dropsondes alone improve intensity by up to 10%.  
Weng & Zhang96 similarly found that dropsondes and flight-level observations improve intensity 
forecasts by around 10%.  Meanwhile, Aberson et al.97 found in their research system HEDAS98-99 that the 
combination of TDR, SFMR, and flight-level data improved intensity forecasts over 20% in cycles with 
TDR data present.  Finally, though Tong et al.82 found that assimilating reconnaissance data degraded 
short-term hurricane intensity forecasts due to significant deficiencies in HWRF physics and data 
assimilation, on average the additional data improved forecasts by up to 20% after 24h. 

Recent research suggests there is significant potential for further improvements of operational TC 
intensity forecasts through the assimilation of reconnaissance observations.  An internal assessment at 
NCEP used a pre-implementation version of the 2019 HWRF to examine the combined impact of all 
reconnaissance data for high-impact TCs from 2016-18 (e.g., Matthew, Harvey, Irma, Maria, Florence, 
and Michael).  Even though all of these storms were of Category 4-5 intensity during the period of 
reconnaissance, the impact of reconnaissance DA improved the intensity forecast by ~10% (Figure 3 in 
Ref. 100).  This represents a notable improvement upon the results of Tong et al.82 for hurricanes (albeit 
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with different storms), owing to major advances in HWRF physics, dynamics, and DA.  The ongoing 
assessment of dropsonde assimilation impact in Ditchek et al.95 also suggests that the impact of inner-core 
DA continues to improve as the HWRF DA system matures. 

 
Figure 3.  The impact of reconnaissance data on the operational HWRF model intensity forecasts of high-impact 
storms of the 2016-2018 hurricane seasons, as shown in Zawislak et al.100  Results are expressed in terms of relative 
skill, where the baseline (red) is the configuration without reconnaissance data. 

4.2 Ground-based radar 

When TCs are sufficiently near land, ground-based radar can provide high spatial and temporal 
observations to supplement those of reconnaissance.  Zhang et al.101 was the first study to assess the 
impact of ground-based Doppler velocity for a tropical cyclone.  They found that forecasts initialized 
without assimilating data from the US WSR-88D network failed to capture the genesis and rapid 
intensification of landfalling Hurricane Humberto (2007).  However, when Doppler velocity data was 
assimilated with an EnKF, subsequent forecasts showed a landfalling hurricane of approximately the 
correct intensity.  A number of subsequent studies explored the use of Doppler velocity from ground-
based radars to improve TC forecasts around the world (e.g., Refs. 102-107). 

NCEP capitalized on the WSR-88D network for operational hurricane forecast improvement beginning in 
2020, when assimilation of Doppler velocity was implemented into HWRF.  Internal testing at NCEP 
showed a roughly 10% improvement in intensity forecasts near land as a result of this improvement.  
Despite this advancement, a great deal more can be achieved with further use of ground-based radar.  For 
example, NCEP does not receive radar data from anywhere outside the US (e.g., Caribbean nations, 
Bahamas, etc), which could be extremely beneficial for improving forecasts of near-land tropical 
cyclones. This potential remains an area of active research. 



18 

Recent studies show that the assimilation of ground-based radar radial velocity in combination with the 
reflectivity data is complementary and can further improve the model analyses and forecasts than 
assimilating one data type alone,108-109 although there are various approaches to assimilate radar 
reflectivity data in either variational108-110 or ensemble framework,111 or through latent heat nudging using 
a digital filter.112 In a case study of Hurricane Isabel (2003) using the 3DVar method, Zhao & Jin109 
demonstrated that the assimilation of radar reflectivity improved TC rainbands intensity and coverage, 
while radar radial velocity assimilation improved TC intensity and dynamic structure. The combined 
assimilation of radar radial velocity and reflectivity led to the best forecasts, particularly improved 24-hr 
precipitation forecasts along the path of the inner core during landfall. 

4.3 Enhanced satellite-derived atmospheric motion vectors (AMVs) 

AMVs are derived from successive multispectral geostationary satellite images by tracking the 
motions of clouds and water vapor structures to provide estimates of tropospheric winds. They are 
routinely derived using ‘full-disk’ images by automated processing algorithms at the operational satellite 
data processing centers around the globe at hourly intervals. The dynamic information provided by AMVs 
over conventionally-sparse regions of the globe such as the Tropics was shown to improve numerical 
model TC forecasts in the 1990’s 167-168 and AMV data quality and quantities have improved ever since 
then.114-115 For example, GOES AMVs derived from a new nested-tracking algorithm developed at 
NOAA/NESDIS113 provide higher spatial and temporal resolution and better quality compared to the 
AMVs derived from the heritage algorithm. It has been shown these data currently available in the NCEP 
operational data stream can improve HWRF track forecasts.116 

In addition to AMVs currently available in the operational stream, a recent development that could 
profoundly impact the initialization of TCs in the absence of reconnaissance data is the increased 
availability of AMVs derived from rapid-scan imagery. As described in Stettner et al. 169, more frequent 
image scanning along with processing methodologies designed to increase the spatiotemporal coverage of 
AMVs over the TC cloud canopy allows for drastically improved depictions of the smaller-scale flow 
fields, especially over the inner core of the storm. An example of this coverage provided by the GOES-16 
satellite is shown in Figure 4. Similar capabilities exist from the Himawari and Meteosat satellites. 

Recent studies have shown that assimilating these additional enhanced AMV datasets can have large 
impacts on TC intensity and structure forecasts. Using rapid-scan AMV datasets derived from GOES-16, 
Zhang et al. 

117 and Velden et al.
118 showed improved TC intensity forecasts by 5-10% in earlier versions 

of the HWRF model. Results with a more recent version of HWRF show that the enhanced AMVs can also 
reduce track errors by roughly 10%.

119 Lewis et al. 170 discuss DA tactics for the use of the enhanced AMV 
observations to optimize initial analysis impact. 

A limitation of the aforementioned studies using HWRF is endemic to HWRF itself.  The model is not 
configured in a manner that can fully capitalize on the benefits of higher temporal and spatial resolution 
of the new AMV datasets.  One example of such a limitation is that the operational HWRF is hard-coded 
with 6-hourly cycling, which limits the ability to effectively use high-frequency data.  That being said, the 
next-generation HAFS that is being developed by NCEP in conjunction with numerous outside partners 
will provide much more flexibility to take advantage of these newly emerging datasets. Thus, in the 
future, the positive impact of this data should increase. 
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Figure 4: An enhanced AMV field over Hurricane Delta (2020) derived from GOES-16 meso- sector rapid-scan 
imagery. Inner-core-top vectors (50-150 mb) in magenta. Figure courtesy of C. Velden (UW-CIMSS). 

4.4 All-sky satellite radiances 

All-sky satellite radiance assimilation in the global models has advanced significantly over the past 
decades. The all-sky satellite radiance assimilation utilizes radiances not only from clear-sky 
measurements, but also from cloud and precipitation-affected measurements. ECMWF pioneered the 
implementation of all-sky radiance assimilation for the Special Sensor Microwave/Imager Sounder 
(SSM/IS) and the Advanced Microwave Scanning Radiometer for the Earth Observing System 
(AMSR/E) in 2009.120  Since then, ECMWF has continued development of all-sky radiance assimilation 
to include additional microwave imagers and sounders, and extend to infrared polar-orbiting sounders and 
geostationary imagers.50,121 All-sky radiance assimilation has been shown to contribute greatly to 
improved forecasts of dynamic quantities and precipitation beyond day 6.122 Other operational centers 
such as NCEP,123-125 Met Office,126 JMA,127 and Environment and Climate Change Canada (ECCC)128 
have also devoted significant efforts to expand the radiance assimilation beyond only clear-sky 
conditions. Global improvements to the temperature, humidity and wind fields from the all-sky radiance 
assimilation could directly benefit TC analyses and prediction through the assimilation of the additional 
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radiance information within the cloudy and precipitating areas. One study127 shows a more 
pronouncement beneficial impact on TC predictions in the early and developing stages of the TC than 
steady and decaying stages of the TC. Regional assimilation of all-sky radiances generally presents a 
different challenge (e.g. domain size, model top, bias correction, etc.) compared to the global 
assimilation; however, several demonstration studies show the feasibility of the all-sky microwave 
assimilation in the regional models, and overall results in positive impacts on TC track, intensity, storm 
structure and precipitation forecasts.129-132 

The extension to all-sky infrared radiance assimilation is an on-going active area of research. Chevallier 
and Lopez133 identified that cloud-affected satellite radiances at 4.5, 6.3 and 14.3 µm can be directly 
assimilated in the DA system, similar to microwave humidity sounding channels. In particular, there is 
considerable interest to directly assimilate infrared radiances from geostationary imagers in cloud-
resolving models for TC applications.134  A case study by Zhao et al.135 for Hurricane Patricia (2015) 
demonstrated that geostationary IR radiances can observe the multiscale structures of TCs. Additional 
case studies by Honda et al.136 and Minamide & Zhang137 demonstrated the all-sky infrared radiance 
assimilation from Himawari-8 can improve the TC intensity forecasts, particularly the rapid 
intensification forecasts.  Similar case studies by Minamide & Zhang138 and Zhang et al.139 found that the 
assimilation of only channel 8 (water vapor) from the GOES-16 Advanced Baseline Imager can produce 
very accurate forecasts of the rapid intensification of Hurricane Harvey (2017).   

5.  Recent TC DA Advancements and Future Challenges 

While increased model resolution and more sophisticated physics parameterization certainly promote 
better TC forecasts, they also bring challenges to the DA system, as the standard assumptions for model 
representativeness, the forward model errors, background errors, and dynamical balance constraint in the 
analysis may be invalid when the DA system has to ingest high spatiotemporal observations within and 
around TCs. 

5.1 Treatment of observation error 

The representativeness and forward model errors are usually considered in DA in terms of observation 
errors. For large first guess departures often seen in dropsondes near the core of a TC in the HRES 
incremental 4DVar system, Bonavita et al.47 proposed to use ensemble DA to adaptively estimate the 
observation errors. This adaptive observation error model reduced the observation influence in the 
variational update, improved the minimization convergence and validated the bounds of the validity of the 
tangent linear model. The use of the adaptive error model for the dropsonde observations also led to a 
better position analysis and more axisymmetric and realistic structure of the TC. 

For satellite radiances over the cloud and precipitation-affected areas such as TC, different shape, 
intensity or location of the clouds resolved in the model versus in the observations usually leads to non-
Gaussian behavior (e.g. the error increases with cloud amount). The typical approach for all-sky radiance 
assimilation at most operational centers is to use observation error inflation.140 A number of studies for 
TC all-sky microwave radiances DA employing similar error model formulations129-132 suggested positive 
impacts on TC predictions. A similar observation error model to account for the cloud amount for the 
direct assimilation of all-sky infrared radiances was developed as well.141  However, this error model may 
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not perform well in the situation when the error distribution of the first guess departures becomes two-
dimensional by the mismatch of clouds in the model and in the observations.142 In this case, the 
symmetric error model by Geer & Bauer140 would still prescribe a large error for the observation even 
when the model and the observation agrees (on the diagonal of the two-dimensional error distribution). 
Presumably, it should constrain the small first guess departure by reducing the error on the diagonal of the 
two-dimensional error distribution. In part to overcome this, Minamide & Zhang143  proposed a flow-
dependent adaptive observation error inflation (AOEI) using the first guess departures and applied to the 
assimilation of GOES-R all-sky radiances for TC in an observing system simulation experiment (OSSE). 
The AOEI approach resulted in less root-mean-square errors (RMSEs) for some of the cloud-affected 
state variables at larger scales, and were better at maintaining the flow balance. However, as both 
observation error inflation methods are empirical, it is worth investigating whether there are more optimal 
or correct ways to describe the observation error (e.g. Ref. 144), particular for the TC environment. 

5.2 Treatment of background error 

Over the last decade, most operational centers adopted an ensemble component to incorporate into their 
DA systems for flow-dependent background error covariance estimates.30, 63,135  The Met Office, FNMOC 
and NCEP all use hybrid background error covariance in their operational global systems. ECMWF uses 
the EDA to directly diagnose the background errors. Bonavita et al.47 showed that with increased 
resolution, EDA may introduce small scale contributions that affect the subsequent analyses and 
forecasts, and result in unrealistic analyses for TCs. The study suggested that the non-Gaussian error 
distribution of an EDA forecast ensemble with increased resolution directly caused a multimodal TC 
position distribution. A solution was to reduce the resolution of the EDA-derived background errors on a 
linear reduced Gaussian grid together with non-homogeneous wavelet-based noise filter. Chen & 
Snyder146 showed that short DA cycles may also help alleviate the large non-Gaussian forecast errors 
from vortex position spread. 

Additionally, limited ensemble size in the ensemble-based DA requires covariance localization to 
counteract the sampling errors. Small ensembles can introduce a noisy background error covariance 
estimate, which in turn makes the analysis inaccurate.147 Poterjoy et al.148 demonstrated in experiments, 
with ensemble size ranging from 30 to 300, that the sampling differences can dominate variations of the 
TC outer core wind and pressure fields up to 3 days in forecast lead time. An ensemble with 60 or more 
members suggested a similarly realistic TC structure and sample correlations between the model state 
variables. Using the optimal linear filtering theory, Ménétrier et al.149 revealed that the optimal value of 
the localization length may be determined by the ensemble size. 

5.3 Use of new observations 

Aside from the observations thoroughly discussed in section 4, there are many observations that arise 
from new satellite platforms, new channels from existing satellite sensors, new space-borne radar, and 
many other sources. For example, JMA mesoscale system has been assimilating a space-borne radar 
GPM/Dual-frequency Precipitation Radar (DPR) to improve TC initial conditions,150 though improvement 
on the background flow-dependence and microphysics scheme was needed in order to maximize the 
benefits of such high-frequency observations. Lightning data from the World Wide Lightning Location 
Network (WWLLN) around hurricanes or typhoons has been shown to improve TC intensity forecasts.151 



22 

Though HWRF/GSI now has the capability to assimilate lightning data from the GOES Geostationary 
Lightning Mapper (GLM),152 their impact on TC forecasting is yet to be assessed. Another new data 
source - Airborne Doppler wind lidar (DWL;153-154) has also been shown to complement TDR 
observations154 and its assimilation improved TC forecasting.154-155 Finally, observations collected from 
uncrewed aircraft systems (UASs) is a new area of research that shows promise to improve TC analyses 
and forecasts.86-87,90,156-157 

5.4 Development of new DA methods 

As we further develop the capability to simultaneously assimilate a broad network of observations that 
resolve different scales, a multi-scale DA method is needed. Zhang et al.101 introduced successive 
covariance localization (SCL) with a sequential ensemble Kalman filter for a case study of Hurricane 
Humberto (2007) with dense radar observation assimilation. The filter assimilated groups of observations 
separately using different localization length scales. This allowed the designated groups of observations to 
update the prior only for the specified scales rather than for all resolved scales. Using this approach, the 
SCL was able to account for the presence of both the large- and small-scale errors. When this technique 
was applied including the assimilation of dense coastal radar observations, not only were the position and 
intensity forecasts for Hurricane Humberto improved, but the rapid intensification of the storm was better 
predicted, as compared to the no DA experiment or the experiment with a 3DVar method. Recently, 
scale-dependent localization (SDL) has been developed for the EnVar DA system158-159 and ensemble-
based system.160 Multiscale-aware scheme allows the simultaneous update at all scales through the 
assimilation of all available observations independently at once, which not only proves to be more 
computational efficient and scalable, but also can lead to more accurate tropical cyclone forecasts.159 

In parallel with the spatial scale considerations, moist physical processes and unbalanced flows, 
nonlinearity and non-Gaussianity at convective scales should be considered in the DA design as well. It 
remains an active research topic whether nonlinear DA such as particle filters,161 or modifications to 
hybrid and ensemble methods to deal with non-Gaussianity,162-163 or combination of machine learning 
(ML) and DA,161,164  will be sufficient for TC DA. There are also new applications that tackle the issue 
that serial DA updates do not provide a unique solution because of localization. As Steward et al.165-166 

argue, in highly nonlinear regimes such as the TC inner core, this potentially becomes an important issue. 
Further, as the model is developed to be coupled with the ocean and by doing so has shown benefit in TC 
forecasting,46 the corresponding DA system should be coupled with the ocean as well. 
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